THE ELEGANT UNIVERSE, Brian Greene, 1999, 2003
```(annotated and with added bold highlights by Epsilon=One)
```(annotated and with added bold highlights by Epsilon=One)
Chapter 3 - Of Warps and Ripples
Einstein's Happiest Thought
Even before the discovery of special relativity, Newton's theory of gravity was lacking in one important respect. Although it can be used to make highly accurate predictions about how objects will move under the influence of gravity, it offers no insight into what gravity is. That is, how is it that two bodies that are physically separate from another, possibly hundreds of millions of miles apart if not more, nonetheless influence each other's motion? By what means does gravity execute its mission? This is a problem of which Newton himself was well aware. In his own words,
In 1907, while pondering these issues at his desk in the patent office in Bern, Switzerland, Einstein had the central insight that, through fits and starts, would eventually lead him to a radically new theory of gravity—an approach that would not merely fill in the gap in Newton's theory, but, rather, would completely reformulate thinking about gravity and, of utmost importance, would do so in a manner fully consistent with special relativity.
The insight Einstein had is relevant for a question that may have troubled you in Chapter 2. There we emphasized that we were interested in understanding how the world appears to individuals undergoing constant-velocity relative motion. By carefully comparing the observations of such individuals, we found some dramatic implications for the nature of space and time. But what about individuals who are experiencing accelerated motion? The observations of such individuals will be more complicated to analyze than those of constant-velocity observers, whose motion is more serene, but nevertheless we can ask whether there is some way of taming this complexity and bringing accelerated motion squarely into our newfound understanding of space and time.
Einstein's "happiest thought" showed how to do so. To understand his insight, imagine the year is 2050, you are the FBI's chief explosives expert, and you have just received a frantic call to investigate what appears to be a sophisticated bomb planted in the heart of Washington, D.C. After rushing to the scene and examining the device, your worst nightmare is confirmed: The bomb is nuclear and of such powerful design that even if it were buried deeply in the earth's crust or submerged in an ocean's depth, the damage from its blast would be devastating. After gingerly studying the bomb's detonation mechanism you realize that there is no hope to disarm it and, furthermore, you see that it has a novel booby-trap feature. The bomb is mounted on a scale. Should the reading on the scale deviate from its present value by more than 50 percent, the bomb will detonate. According to the timing mechanism, you see that you have but one week and counting. The fate of millions of people rests on your shoulders—what do you do?
Well, having determined that there is no safe place anywhere on or in the earth to detonate the device, you appear to have only one option: You must launch the device into the depths of outer space where its explosion will cause no damage. You present this idea to a meeting of your team at the FBI and almost immediately your plan is dashed by a young assistant. "There is a serious problem with your plan," your assistant Isaac begins. "As the device gets farther from the earth, its weight will decrease, since its gravitational attraction with the earth will diminish. This means that the reading on the scale inside the device will decrease, causing detonation well before reaching the safety of deep space." Before you have time to fully contemplate this criticism, another young assistant pipes up: "In fact, come to think of it, there is even another problem," your assistant Albert says. "This problem is as important as Isaac's objection but somewhat more subtle, so bear with me as I explain it." Wanting a moment to think through Isaac's objection, you try to hush Albert, but as usual, once he begins there is no stopping him.
"In order to launch the device into outer space we will have to mount it on a rocket. As the rocket accelerates upward in order to penetrate outer space, the reading on the scale will increase, again causing the device to detonate prematurely. You see, the base of the bomb—which rests on the scale—will push harder on the scale than when the device is at rest in the same way that your body is squeezed back into the seat of an accelerating car. The bomb will 'squeeze' the scale just as your back squeezes the cushion in the car seat. When a scale is squeezed, of course, its reading increases—and this will cause the bomb to detonate if the resulting increase is more than 50 percent."
You thank Albert for his comment but, having tuned out his explanation to mentally confirm Isaac's remark, you dejectedly proclaim that it takes only one fatal blow to kill an idea, and Isaac's obviously correct observation has definitively done that. Feeling somewhat hopeless you ask for new suggestions. At that moment, Albert has a stunning revelation: "On second thought," he continues, "I do not think that your idea is dead at all. Isaac's observation that gravity diminishes as the device is lifted into space means that the reading on the scale will go down. My observation that the upward acceleration of the rocket will cause the device to push harder against the scale means that the reading will go up. Taken together, this means that if we carefully adjust the precise moment-to-moment acceleration of the rocket as it moves upward, these two effects can cancel each other out! Specifically, in the early stages of liftoff, when the rocket still feels the full force of the earth's gravity, it can accelerate, just not too severely, so that we stay within the 50 percent window. As the rocket gets farther and farther from the earth—and therefore feels the earth's gravity less and less—we need to increase its upward acceleration to compensate. The increase in the reading from upward acceleration can exactly equal the decrease in the reading from the diminishing gravitational attraction, so, in fact, we can keep the actual reading on the scale from changing at all!"
Albert's suggestion slowly begins to make sense. "In other words," you respond, "an upward acceleration can provide a stand-in or a substitute for gravity. We can imitate the effect of gravity through suitably accelerated motion."
"Exactly," responds Albert.
"So," you continue, "we can launch the bomb into space and by judiciously adjusting the acceleration of the rocket we can ensure that the reading on the scale does not change, thus avoiding detonation until it is a safe distance from earth." And so by playing off gravity and accelerated motion—using the precision of twenty-first-century rocket science—you are able to stave off disaster.
The recognition that gravity and accelerated motion are profoundly interwoven is the key insight that Einstein had one happy day in the Bern patent office. Although the bomb experience highlights the essence of his idea, it is worth rephrasing it in a framework closer to that of Chapter 2. For this purpose, recall that if you are put into a sealed, windowless compartment that is not accelerating, there is no way for you to determine your speed. The compartment looks the same and any experiments you do yield identical results regardless of how fast you are moving. More fundamentally, without outside benchmarks for comparison there is no way that a velocity can even be assigned to your state of motion. On the other hand, if you are accelerating, then even with your perceptions limited to the confines of your sealed compartment, you will feel a force on your body. For instance, if your forward-facing chair is bolted to the floor and your compartment is being accelerated forward, you will feel the force of your seat on your back just as with the car described by Albert. Similarly, if your compartment is being accelerated upward you will feel the force of the floor on your feet. Einstein's realization was that within the confines of your tiny compartment, you will not be able to distinguish these accelerated situations from ones without acceleration but with gravity: When their magnitudes are judiciously adjusted, the force you feel from a gravitational field or from accelerated motion are indistinguishable. If your compartment is placidly sitting upright on the earth's surface, you will feel the familiar force of the floor on your feet, just as in the scenario of upward acceleration; this is exactly the same equivalence Albert exploited in his solution for launching the terrorist bomb into space. If your compartment is resting on its back end you will feel the force of your seat on your back (preventing you from falling), just as when you were accelerating horizontally. Einstein called the indistinguishability between accelerated motion and gravity the equivalence principle. It plays a central role in general relativity. 2
This description shows that general relativity finishes a job initiated by special relativity. Through its principle of relativity, the special theory of relativity declares a democracy of observational vantage points: the laws of physics appear identical to all observers undergoing constant-velocity motion. But this is limited democracy indeed, for it excludes an enormous number of other viewpoints—those of individuals who are accelerating. Einstein's 1907 insight now shows us how to embrace all points of view—constant velocity and accelerating—within one egalitarian framework. Since there is no difference between an accelerated vantage point without a gravitational field and a nonaccelerated vantage point with a gravitational field, we can invoke the latter perspective and declare that [/I]all observers, regardless of their state of motion, may proclaim that they are stationary and "the rest of the world is moving by them," so long as they include a suitable gravitational field in the description of their own surroundings.[/I] In this sense, through the inclusion of gravity, general relativity ensures that all possible observational vantage points are on equal footing. (As we shall see later, this means that distinctions between observers in Chapter 2 that relied on accelerated motion—as when George chased after Gracie by turning on his jet-pack and aged less than she—admit an equivalent description without acceleration, but with gravity.)
This deep connection between gravity and accelerated motion is certainly a remarkable realization, but why did it make Einstein so happy? The reason, simply put, is that gravity is mysterious. It is a grand force permeating the life of the cosmos, but it is elusive and ethereal. On the other hand, accelerated motion, although somewhat more complicated than constant-velocity motion, is concrete and tangible. By finding a fundamental link between the two, Einstein realized that he could use his understanding of motion as a powerful tool toward gaining a similar understanding of gravity. Putting this strategy into practice was no small task, even for the genius of Einstein, but ultimately this approach bore the fruit of general relativity. Achieving this end required that Einstein forge a second link in the chain uniting gravity and accelerated motion: the curvature of space and time, to which we now turn.
It is inconceivable, that inanimate brute matter, should, without the mediation of something else, which is not material, operate upon and affect other matter without mutual contact. That Gravity should be innate, inherent and essential to matter so that one body may act upon another at a distance thro' a vacuum without the mediation of anything else, by and through which their action and force may be conveyed, from one to another, is to me so great an absurdity that I believe no Man who has in philosophical matters a competent faculty of thinking can ever fall into it. Gravity must be caused by an agent acting constantly according to certain laws; but whether this agent be material or immaterial, I have left to the consideration of my readers. 1
That is, Newton accepted the existence of gravity and went on to develop equations that accurately describe its effects, but he never offered any insight into how it actually works. He gave the world an "owner's manual" for gravity which delineated how to "use" it—instructions that physicists, astronomers, and engineers have exploited successfully to plot the course of rockets to the moon, Mars, and other planets in the solar system; to predict solar and lunar eclipses; to predict the motion of comets, and so on. But he left the inner workings—the contents of the "black box" of gravity—a complete mystery. When you use your CD player or your personal computer, you may find yourself in a similar state of ignorance regarding how it works internally. So long as you know how to operate the equipment neither you nor anyone else needs to know how it accomplishes the tasks you set for it. But if your CD player or personal computer breaks, its repair relies crucially on knowledge of its internal workings. Similarly, Einstein realized that hundreds of years of experimental confirmation notwithstanding, special relativity implied that in some subtle way Newton's theory was "broken" and that its repair required coming to grips with the question of the true and full nature of gravity.In 1907, while pondering these issues at his desk in the patent office in Bern, Switzerland, Einstein had the central insight that, through fits and starts, would eventually lead him to a radically new theory of gravity—an approach that would not merely fill in the gap in Newton's theory, but, rather, would completely reformulate thinking about gravity and, of utmost importance, would do so in a manner fully consistent with special relativity.
The insight Einstein had is relevant for a question that may have troubled you in Chapter 2. There we emphasized that we were interested in understanding how the world appears to individuals undergoing constant-velocity relative motion. By carefully comparing the observations of such individuals, we found some dramatic implications for the nature of space and time. But what about individuals who are experiencing accelerated motion? The observations of such individuals will be more complicated to analyze than those of constant-velocity observers, whose motion is more serene, but nevertheless we can ask whether there is some way of taming this complexity and bringing accelerated motion squarely into our newfound understanding of space and time.
Einstein's "happiest thought" showed how to do so. To understand his insight, imagine the year is 2050, you are the FBI's chief explosives expert, and you have just received a frantic call to investigate what appears to be a sophisticated bomb planted in the heart of Washington, D.C. After rushing to the scene and examining the device, your worst nightmare is confirmed: The bomb is nuclear and of such powerful design that even if it were buried deeply in the earth's crust or submerged in an ocean's depth, the damage from its blast would be devastating. After gingerly studying the bomb's detonation mechanism you realize that there is no hope to disarm it and, furthermore, you see that it has a novel booby-trap feature. The bomb is mounted on a scale. Should the reading on the scale deviate from its present value by more than 50 percent, the bomb will detonate. According to the timing mechanism, you see that you have but one week and counting. The fate of millions of people rests on your shoulders—what do you do?
Well, having determined that there is no safe place anywhere on or in the earth to detonate the device, you appear to have only one option: You must launch the device into the depths of outer space where its explosion will cause no damage. You present this idea to a meeting of your team at the FBI and almost immediately your plan is dashed by a young assistant. "There is a serious problem with your plan," your assistant Isaac begins. "As the device gets farther from the earth, its weight will decrease, since its gravitational attraction with the earth will diminish. This means that the reading on the scale inside the device will decrease, causing detonation well before reaching the safety of deep space." Before you have time to fully contemplate this criticism, another young assistant pipes up: "In fact, come to think of it, there is even another problem," your assistant Albert says. "This problem is as important as Isaac's objection but somewhat more subtle, so bear with me as I explain it." Wanting a moment to think through Isaac's objection, you try to hush Albert, but as usual, once he begins there is no stopping him.
"In order to launch the device into outer space we will have to mount it on a rocket. As the rocket accelerates upward in order to penetrate outer space, the reading on the scale will increase, again causing the device to detonate prematurely. You see, the base of the bomb—which rests on the scale—will push harder on the scale than when the device is at rest in the same way that your body is squeezed back into the seat of an accelerating car. The bomb will 'squeeze' the scale just as your back squeezes the cushion in the car seat. When a scale is squeezed, of course, its reading increases—and this will cause the bomb to detonate if the resulting increase is more than 50 percent."
You thank Albert for his comment but, having tuned out his explanation to mentally confirm Isaac's remark, you dejectedly proclaim that it takes only one fatal blow to kill an idea, and Isaac's obviously correct observation has definitively done that. Feeling somewhat hopeless you ask for new suggestions. At that moment, Albert has a stunning revelation: "On second thought," he continues, "I do not think that your idea is dead at all. Isaac's observation that gravity diminishes as the device is lifted into space means that the reading on the scale will go down. My observation that the upward acceleration of the rocket will cause the device to push harder against the scale means that the reading will go up. Taken together, this means that if we carefully adjust the precise moment-to-moment acceleration of the rocket as it moves upward, these two effects can cancel each other out! Specifically, in the early stages of liftoff, when the rocket still feels the full force of the earth's gravity, it can accelerate, just not too severely, so that we stay within the 50 percent window. As the rocket gets farther and farther from the earth—and therefore feels the earth's gravity less and less—we need to increase its upward acceleration to compensate. The increase in the reading from upward acceleration can exactly equal the decrease in the reading from the diminishing gravitational attraction, so, in fact, we can keep the actual reading on the scale from changing at all!"
Albert's suggestion slowly begins to make sense. "In other words," you respond, "an upward acceleration can provide a stand-in or a substitute for gravity. We can imitate the effect of gravity through suitably accelerated motion."
"Exactly," responds Albert.
"So," you continue, "we can launch the bomb into space and by judiciously adjusting the acceleration of the rocket we can ensure that the reading on the scale does not change, thus avoiding detonation until it is a safe distance from earth." And so by playing off gravity and accelerated motion—using the precision of twenty-first-century rocket science—you are able to stave off disaster.
The recognition that gravity and accelerated motion are profoundly interwoven is the key insight that Einstein had one happy day in the Bern patent office. Although the bomb experience highlights the essence of his idea, it is worth rephrasing it in a framework closer to that of Chapter 2. For this purpose, recall that if you are put into a sealed, windowless compartment that is not accelerating, there is no way for you to determine your speed. The compartment looks the same and any experiments you do yield identical results regardless of how fast you are moving. More fundamentally, without outside benchmarks for comparison there is no way that a velocity can even be assigned to your state of motion. On the other hand, if you are accelerating, then even with your perceptions limited to the confines of your sealed compartment, you will feel a force on your body. For instance, if your forward-facing chair is bolted to the floor and your compartment is being accelerated forward, you will feel the force of your seat on your back just as with the car described by Albert. Similarly, if your compartment is being accelerated upward you will feel the force of the floor on your feet. Einstein's realization was that within the confines of your tiny compartment, you will not be able to distinguish these accelerated situations from ones without acceleration but with gravity: When their magnitudes are judiciously adjusted, the force you feel from a gravitational field or from accelerated motion are indistinguishable. If your compartment is placidly sitting upright on the earth's surface, you will feel the familiar force of the floor on your feet, just as in the scenario of upward acceleration; this is exactly the same equivalence Albert exploited in his solution for launching the terrorist bomb into space. If your compartment is resting on its back end you will feel the force of your seat on your back (preventing you from falling), just as when you were accelerating horizontally. Einstein called the indistinguishability between accelerated motion and gravity the equivalence principle. It plays a central role in general relativity. 2
This description shows that general relativity finishes a job initiated by special relativity. Through its principle of relativity, the special theory of relativity declares a democracy of observational vantage points: the laws of physics appear identical to all observers undergoing constant-velocity motion. But this is limited democracy indeed, for it excludes an enormous number of other viewpoints—those of individuals who are accelerating. Einstein's 1907 insight now shows us how to embrace all points of view—constant velocity and accelerating—within one egalitarian framework. Since there is no difference between an accelerated vantage point without a gravitational field and a nonaccelerated vantage point with a gravitational field, we can invoke the latter perspective and declare that [/I]all observers, regardless of their state of motion, may proclaim that they are stationary and "the rest of the world is moving by them," so long as they include a suitable gravitational field in the description of their own surroundings.[/I] In this sense, through the inclusion of gravity, general relativity ensures that all possible observational vantage points are on equal footing. (As we shall see later, this means that distinctions between observers in Chapter 2 that relied on accelerated motion—as when George chased after Gracie by turning on his jet-pack and aged less than she—admit an equivalent description without acceleration, but with gravity.)
This deep connection between gravity and accelerated motion is certainly a remarkable realization, but why did it make Einstein so happy? The reason, simply put, is that gravity is mysterious. It is a grand force permeating the life of the cosmos, but it is elusive and ethereal. On the other hand, accelerated motion, although somewhat more complicated than constant-velocity motion, is concrete and tangible. By finding a fundamental link between the two, Einstein realized that he could use his understanding of motion as a powerful tool toward gaining a similar understanding of gravity. Putting this strategy into practice was no small task, even for the genius of Einstein, but ultimately this approach bore the fruit of general relativity. Achieving this end required that Einstein forge a second link in the chain uniting gravity and accelerated motion: the curvature of space and time, to which we now turn.