Dialogue21.com Family of Forums  

Go Back   Dialogue21.com Family of Forums > Science > Physics > Theoretical Physics' Theories > String Theories & Branes > The Elegant Universe, Brian Greene, 2003, 1999 > Part III - The Cosmic Symphony > Chapter 6. Nothing but Music: The Essentials of Superstring Theory
FAQ Members List Calendar Search Today's Posts Mark Forums Read

Thread Tools Display Modes
Old 05-03-2014, 08:07 AM
Reviewer's Avatar
Reviewer Reviewer is offline
Avant-garde Sr. Member
Join Date: Jan 2008
Posts: 427
Default A Brief History of String Theory

Table of Contents
.......The Elegant Universe
THE ELEGANT UNIVERSE, Brian Greene, 1999, 2003
```(annotated and with added bold highlights by Epsilon=One)
Chapter 6 - Nothing but Music: The Essentials of Superstring Theory
A Brief History of String Theory
In 1968, a young theoretical physicist named Gabriele Veneziano was struggling to make sense of various experimentally observed properties of the strong nuclear force. Veneziano, then a research fellow at CERN, the European accelerator laboratory in Geneva, Switzerland, had worked on aspects of this problem for a number of years, until one day he came upon a striking revelation. Much to his surprise, he realized that an esoteric formula concocted for purely mathematical pursuits by the renowned Swiss mathematician Leonhard Euler some two hundred years earlier—the so-called Euler beta-function—seemed to describe numerous properties of strongly interacting particles in one fell swoop. Veneziano's observation provided a powerful mathematical encapsulation of many features of the strong force and it launched an intense flurry of research aimed at using Euler's beta-function, and various generalizations, to describe the surfeit of data being collected at various atom smashers around the world. Nevertheless, there was a sense in which Veneziano's observation was incomplete. Like memorized formulae used by a student who does not understand their meaning or justification, Euler's beta-function seemed to work, but no one knew why. It was a formula in search of an explanation. This changed in 1970 when the works of Yoichiro Nambu of the University of Chicago, Holger Nielsen of the Niels Bohr Institute, and Leonard Susskind of Stanford University revealed the hitherto-unknown physics lurking behind Euler's formula. These physicists showed that if one modeled elementary particles as little, vibrating, one-dimensional strings, their nuclear interactions could be described exactly by Euler's function. If the pieces of string were small enough, they reasoned, they would still look like point particles, and hence could be consistent with experimental observations.

Although this provided an intuitively simple and pleasing theory, it was not long before the string description of the strong force was shown to fail. During the early 1970s, high-energy experiments capable of probing the subatomic world more deeply showed that the string model made a number of predictions that were in direct conflict with observations. At the same time, the point-particle quantum field theory of quantum chromodynamics was being developed, and its overwhelming success in describing the strong force led to the dismissal of string theory

Most particle physicists thought that string theory had been relegated to the dustbin of science, but a few dedicated researchers kept at it. Schwarz, for instance, felt that "the mathematical structure of string theory was so beautiful and had so many miraculous properties that it had to be pointing toward something deep." 2 (Epsilon=One: YES!!!) One of the problems physicists found with string theory was that it seemed to have a true embarrassment of riches. (Epsilon=One: YES!!!) The theory contained configurations of vibrating string (Epsilon=One: "Oscillating" would be a better term as "vibrating" is only one of 10 various oscillations of the first phenomenon of Reality—the Pulsoid/"dark matter.") that had properties akin to those of gluons, substantiating its early claim of being a theory of the strong force. But beyond these it contained additional messenger-like particles that did not appear to have any relevance to experimental observations of the strong force. In 1974, Schwarz and Joel Scherk of the Ecole Normale Supérieure made a bold leap that transformed this apparent vice into a virtue. After studying the puzzling messenger-like patterns of string vibration, they realized that their properties matched perfectly those of the hypothesized messenger particle of the gravitational force—the graviton. Although these "smallest bundles" of the gravitational force have, as yet, never been seen, theorists can confidently predict certain basic features that they must possess, and Scherk and Schwarz found these properties to be realized exactly by certain vibrational patterns. Based on this, Scherk and Schwarz suggested that string theory had failed in its initial attempt because physicists had unduly constrained its scope. String theory is not just a theory of the strong force, they proclaimed; it is a quantum theory that includes gravity as well. 3

The physics community did not receive this suggestion with unbridled enthusiasm. In fact, Schwarz recounts that "our work was universally ignored." 4 The path of progress was already littered with numerous failed attempts to unite gravity and quantum mechanics. String theory had been shown wrong in its initial effort to describe the strong force, and it seemed to many that it was senseless to try to use the theory to pursue an even grander goal. Even more devastating, subsequent studies during the late 1970s and early 1980s showed that string theory and quantum mechanics suffered from their own subtle conflicts. It appeared that the gravitational force had, once again, resisted incorporation into the microscopic description of the universe.

Such was the case until 1984. In a landmark paper culminating more than a dozen years of intense research that had been largely ignored and often outright dismissed by most physicists, Green and Schwarz established that the subtle quantum conflict afflicting string theory could be resolved. Moreover, they showed that the resulting theory had sufficient breadth to encompass all of the four forces and all of matter as well. As word of this result spread throughout the worldwide physics community, particle physicists by the hundreds dropped their research projects to launch a full-scale assault on what appeared to be the last theoretical battleground in the ancient quest to understand the deepest workings of the universe.

I began graduate school at Oxford University in October 1984. Although I was excited to be learning about the likes of quantum field theory, gauge theory, and general relativity, there was a pervasive feeling among the older graduate students that there was little or no future for particle physics. The standard model was in place and its remarkable success at predicting experimental outcomes indicated that its verification was merely a matter of time and details. Going beyond its limits to include gravity and possibly to explain the experimental input on which it relies—the 19 numbers summarizing the elementary particle masses, their force charges, and the relative strengths of the forces, numbers that are known from experiment but are not understood theoretically—was so daunting a task that all but the most courageous physicists recoiled at the challenge. But six months later the mood had swung completely around. The success of Green and Schwarz finally trickled down even to first-year graduate students, and an electrifying sense of being on the inside of a profound moment in the history of physics displaced the previous ennui. A number of us consistently worked deep into the night to try to master the vast areas of theoretical physics and abstract mathematics that are required to understand string theory.

The period from 1984 to 1986 has come to be known as the "first superstring revolution." During those three years more than a thousand research papers on string theory were written by physicists from around the world. These works showed conclusively that numerous features of the standard model—features that had been painstakingly discovered over the course of decades of research—emerged naturally and simply from the grand structure of string theory. As Michael Green has said, "The moment you encounter string theory and realize that almost all of the major developments in physics over the last hundred years emerge—and emerge with such elegance—from such a simple starting point, you realize that this incredibly compelling theory is in a class of its own." 5 Moreover, for many of these features, as we shall discuss, string theory offers a far fuller and more satisfying explanation than is found in the standard model. These developments convinced many physicists that string theory was well on its way to fulfilling its promise of being the ultimate unified theory.

Nonetheless, over and over again string theorists encountered a significant stumbling block. In theoretical physics research, one is frequently confronted with equations that are just too hard to understand or to analyze. Typically, physicists don't give up, but try to solve the equations approximately. The situation in string theory is even more difficult. Even determining the equations themselves has proved to be so difficult that only approximate versions of them have so far been deduced. String theorists have thereby been limited to finding approximate solutions to approximate equations. After the few years of dramatic progress during the first superstring revolution, physicists found that the approximations being used were inadequate to answer a number of essential questions hindering further developments. With no concrete proposals for going beyond the approximate methods, many physicists working on string theory grew frustrated and returned to their previous lines of research. For those who remained, the late 1980s and early 1990s were trying times. Like a golden treasure securely locked in a safe and visible only through a tiny, tantalizing peephole, the beauty and promise of string theory beckoned, but no one had the key to unlock its power. Long dry spells were periodically punctuated by important discoveries, but it was clear to everyone in the field that new methods with the power to go beyond the previous approximations were required.

Then, in a breathtaking lecture at the Strings 1995 conference held at the University of Southern California—a lecture that stunned a packed audience of the world's top physicists—Edward Witten announced a plan for taking the next step, thereby igniting the "second superstring revolution." String theorists, as of this writing, are working vigorously to sharpen a set of new methods that promise to overcome the theoretical obstacles previously encountered. The difficulties that lie ahead will severely test the technical might of the world's superstring theorists, but the light at the end of the tunnel, although still distant, may finally be becoming visible.

In this chapter and a number that follow, we shall describe the understanding of string theory that emerged from the first superstring revolution and subsequent work prior to the second superstring revolution. From time to time we will indicate new insights stemming from the latter; our discussion of these most recent advances will come in Chapter 12 and Chapter 13.
Table of Contents
.......The Elegant Universe
Reply With Quote

Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

All times are GMT +1. The time now is 02:43 PM.

Powered by vBulletin® Version 3.6.8
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.