Announcement

Collapse
No announcement yet.

Supergravity

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Supergravity

    Table of Contents
    .......The Elegant Universe
    THE ELEGANT UNIVERSE, Brian Greene, 1999, 2003
    ```(annotated and with added bold highlights by Epsilon=One)
    Chapter 12 - Beyond Strings: In Search of M-Theory
    Supergravity
    In the late 1970s and early 1980s, before the surge of interest in string theory, many theoretical physicists sought a unified theory of quantum mechanics, gravity, and the other forces in the framework of point-particle quantum field theory. The hope was that the inconsistencies between point-particle theories involving gravity and quantum mechanics would be overcome by studying theories with a great deal of symmetry. In 1976 Stanley Deser and Bruno Zumino working at CERN, and independantly, Daniel Freedman, Sergio Ferrara, and Peter Van Nieuwenhuizen, all then of the State University of New York at Stony Brook, discovered that the most promising were those involving supersymmetry, since the tendency of bosons and fermions to give cancelling quantum fluctuations helps to calm the violent microscopic frenzy. The authors coined the term supergravity to describe supersymmetric quantum field theories that try to incorporate general relativity. Such attempts to merge general relativity with quantum mechanics ultimately met with failure. Nevertheless, as mentioned in Chapter 8, there was a prescient lesson to be learned from these investigations, one that presaged the development of string theory.

    The lesson, which perhaps became most clear through the work of Eugene Cremmer, Bernard Julia, and Scherk, all of the Ecole Normale Supérieure in 1978, was that the attempts that came closest to success were supergravity theories formulated not in four dimensions, but in more. Specifically, the most promising were the versions calling for ten or eleven dimensions, with eleven dimensions, it turns out, being the maximal possible. 11 Contact with four observed dimensions was accomplished in the framework, once again, of Kaluza and Klein: The extra dimensions were curled up. In the ten-dimensional theories, as in string theory, six dimensions were curled up, while seven were curled up for the eleven-dimensional theory.

    When string theory took physicists by storm in 1984, the perspective on point-particle supergravity theories changed dramatically. As emphasized repeatedly, if we examine a string with the precision available currently and for the foreseeable future, it looks like a point particle. We can make this informal remark precise: When studying low-energy processes in string theory—those processes that do not have enough energy to probe the ultramicroscopic, extended nature of the string—we can approximate a string by a structureless point particle, using the framework of point-particle quantum field theory We cannot use this approximation when dealing with short-distance or high-energy processes because we know that the extended nature of the string is crucial to its ability to resolve the conflicts between general relativity and quantum mechanics that a point-particle theory cannot. But at low enough energies—large enough distances—these problems are not encountered, and such an approximation is often made for the sake of calculational convenience.

    The quantum field theory that most closely approximates string theory in this manner is none other than ten-dimensional supergravity. The special properties of ten-dimensional supergravity discovered in the 1970s and 1980s are now understood to be low-energy relics of the underlying power of string theory. Researchers studying ten-dimensional supergravity had uncovered the tip of a very deep iceberg—the rich structure of superstring theory. In fact, it turns out that there are four different ten-dimensional supergravity theories that differ in details regarding the precise way in which supersymmetry is incorporated. Three of these turn out to be the low-energy point-particle approximations to the Type IIA string, the Type IIB string, and the Heterotic-E string. The fourth gives the the low-energy point-particle approximation to both the Type I string and the Heterotic-O string; in retrospect, this was the first indication of the close connection between these two string theories.

    This is a very tidy story except that eleven-dimensional supergravity seems to have been left out in the cold. String theory, formulated in ten dimensions, appears to have no room for an eleven-dimensional theory. For a number of years, the general view held by most but not all string theorists was that eleven-dimensional supergravity was a mathematical oddity without any connection to the physics of string theory. 12
    Table of Contents
    .......The Elegant Universe
Working...
X