THE FABRIC of the COSMOS, Brian Greene, 2004
```(annotated and with added bold highlights by Epsilon=One)
```(annotated and with added bold highlights by Epsilon=One)
Chapter 10 - Deconstructing the Bang
What Banged?
A common misconception is that the big bang provides a theory of cosmic origins. It doesn't. The big bang is a theory, partly described in the last two chapters, that delineates cosmic evolution from a split second after whatever happened to bring the universe into existence, but it says nothing at all about time zero itself. annotation 1: click And since, according to the big bang theory, the bang is what is supposed to have happened at the beginning, the big bang leaves out the bang. It tells us nothing about what banged, why it banged, how it banged, or, frankly, whether it ever really banged at all. 1 annotation 2: click In fact, if you think about it for a moment, you'll realize that the big bang presents us with quite a puzzle. annotation 3: click At the huge densities of matter and energy characteristic of the universe's earliest moments, gravity was by far the dominant force. But gravity is an attractive force. It impels things to come together. So what could possibly be responsible for the outward force that drove space to expand? annotation 4: click It would seem that some kind of powerful repulsive force must have played a critical role at the time of the bang, but which of nature's forces could that possibly be? annotation 5: click
For many decades this most basic of all cosmological questions went unanswered. Then, in the 1980s, an old observation of Einstein's was resurrected in a sparkling new form, giving rise to what has become known as inflationary cosmology. And with this discovery, credit for the bang could finally be bestowed on the deserving force: gravity. annotation 6: click It's surprising, but physicists realized that in just the right environment gravity can be repulsive, arid, according to the theory, the necessary conditions prevailed during the earliest moments of cosmic history. For a time interval that would make a nanosecond seem an eternity, the early universe provided an arena in which gravity exerted its repulsive side with a vengeance, driving every region of space away from every other with unrelenting ferocity. So powerful was the repulsive push of gravity that not only was the bang identified, it was revealed to be bigger — much bigger — than anyone had previously imagined. In the inflationary framework, the early universe expanded by an astonishingly huge factor compared with what is predicted by the standard big bang theory, enlarging our cosmological vista to a degree that dwarfed last century's realization that ours is but one galaxy among hundreds of billions. 2
In this and the next chapter, we discuss inflationary cosmology. We will see that it provides a "front end" for the standard big bang model, offering critical modifications to the standard theory's claims about events during the universe's earliest moments. In doing so, inflationary cosmology resolves key issues that are beyond the reach of the standard big bang, makes a number of predictions that have been and in the near future will continue to be experimentally tested, and, perhaps most strikingly, shows how quantum processes can, through cosmological expansion, iron tiny wrinkles into the fabric of space that leave a visible imprint on the night sky. And beyond these achievements, inflationary cosmology gives significant insight into how the early universe may have acquired its exceedingly low entropy, taking us closer than ever to an explanation of the arrow of time.
For many decades this most basic of all cosmological questions went unanswered. Then, in the 1980s, an old observation of Einstein's was resurrected in a sparkling new form, giving rise to what has become known as inflationary cosmology. And with this discovery, credit for the bang could finally be bestowed on the deserving force: gravity. annotation 6: click It's surprising, but physicists realized that in just the right environment gravity can be repulsive, arid, according to the theory, the necessary conditions prevailed during the earliest moments of cosmic history. For a time interval that would make a nanosecond seem an eternity, the early universe provided an arena in which gravity exerted its repulsive side with a vengeance, driving every region of space away from every other with unrelenting ferocity. So powerful was the repulsive push of gravity that not only was the bang identified, it was revealed to be bigger — much bigger — than anyone had previously imagined. In the inflationary framework, the early universe expanded by an astonishingly huge factor compared with what is predicted by the standard big bang theory, enlarging our cosmological vista to a degree that dwarfed last century's realization that ours is but one galaxy among hundreds of billions. 2
In this and the next chapter, we discuss inflationary cosmology. We will see that it provides a "front end" for the standard big bang model, offering critical modifications to the standard theory's claims about events during the universe's earliest moments. In doing so, inflationary cosmology resolves key issues that are beyond the reach of the standard big bang, makes a number of predictions that have been and in the near future will continue to be experimentally tested, and, perhaps most strikingly, shows how quantum processes can, through cosmological expansion, iron tiny wrinkles into the fabric of space that leave a visible imprint on the night sky. And beyond these achievements, inflationary cosmology gives significant insight into how the early universe may have acquired its exceedingly low entropy, taking us closer than ever to an explanation of the arrow of time.
Comment