THE FABRIC of the COSMOS, Brian Greene, 2004
```(annotated and with added bold highlights by Epsilon=One)
```(annotated and with added bold highlights by Epsilon=One)
Chapter 15 - Teleporters and Time Machines
Realistic Teleportation
Since you and I and a DeLorean and everything else are composed of many particles, the natural next step is to imagine applying quantum teleportation to such large collections of particles, allowing us to "beam" macroscopic objects from one place to another. But the leap from teleporting a single particle to teleporting a macroscopic collection of particles is staggering, and enormously far beyond what researchers can now accomplish and what many leaders in the field imagine achieving even in the distant future. But for kicks, here's how Zeilinger fancifully dreams we might one day go about it.

Figure 15.1 A fanciful approach to teleportation envisions having two chambers of quantum entangled particles at distant locations, and a means of carrying out appropriate joint measurements of the particles making up the object to be teleported with the particles in one of the chambers. The results of these measurements would then provide the necessary information to manipulate the particles in the second chamber to replicate the object, and complete the teleportation.
Imagine I want to teleport my DeLorean from New York to London. Instead of providing Nicholas and me with one member each of an entangled pair of photons (what we needed to teleport a single photon), we must each have a chamber of particles containing enough protons, neutrons, electrons, and so on to build a DeLorean, with all the particles in my chamber being quantum entangled with all those in Nicholas's chamber (see Figure 15.1). I also need a device that measures joint properties of all the particles making up my DeLorean with those particles flitting to and fro within my chamber (the analog of measuring joint features of Photons A and B). Through the entanglement of the particles in the two chambers, the impact of the joint measurements I carry out in New York will be imprinted on Nicholas's chamber of particles in London (the analog of Photon C's state reflecting the joint measurement of A and B). If I call Nicholas and communicate the results of my measurements (it'll be an expensive call, as I'll be giving Nicholas some 10^30 results), the data will instruct him on how to manipulate the particles in his chamber (much as my earlier phone call instructed him on how to manipulate Photon C). When he finishes, each particle in his chamber will be in precisely the same quantum state as each particle in the DeLorean (before it was subjected to any measurements) and so, as in our earlier discussion, Nicholas will now have the DeLorean.* Its teleportation from New York to London will be complete.
Note, though, that as of today, every step in this macroscopic version of quantum teleportation is fantasy. An object like a DeLorean has in excess of a billion billion billion particles. While experimenters are gaining facility with entangling more than a single pair of particles, they are extremely far from reaching numbers relevant for macroscopic entities. 6 Setting up the two chambers of entangled particles is thus absurdly beyond current reach. Moreover, the joint measurement of two photons was, in itself a difficult and impressive feat. Extending this to a joint measurement of billions and billions of particles is, as of today, unimaginable. From our current vantage point, a dispassionate assessment would conclude that teleporting a macroscopic object, at least in the manner so far employed for a single particle, is eons — if not an eternity — away.
But, as the one constant in science and technology is the transcendence of naysaying prophesies, I'll simply note the obvious: teleportation of macroscopic bodies looks unlikely. Yet, who knows? Forty years ago, the Enterprise's computer looked pretty unlikely too. 7

Figure 15.1 A fanciful approach to teleportation envisions having two chambers of quantum entangled particles at distant locations, and a means of carrying out appropriate joint measurements of the particles making up the object to be teleported with the particles in one of the chambers. The results of these measurements would then provide the necessary information to manipulate the particles in the second chamber to replicate the object, and complete the teleportation.
Imagine I want to teleport my DeLorean from New York to London. Instead of providing Nicholas and me with one member each of an entangled pair of photons (what we needed to teleport a single photon), we must each have a chamber of particles containing enough protons, neutrons, electrons, and so on to build a DeLorean, with all the particles in my chamber being quantum entangled with all those in Nicholas's chamber (see Figure 15.1). I also need a device that measures joint properties of all the particles making up my DeLorean with those particles flitting to and fro within my chamber (the analog of measuring joint features of Photons A and B). Through the entanglement of the particles in the two chambers, the impact of the joint measurements I carry out in New York will be imprinted on Nicholas's chamber of particles in London (the analog of Photon C's state reflecting the joint measurement of A and B). If I call Nicholas and communicate the results of my measurements (it'll be an expensive call, as I'll be giving Nicholas some 10^30 results), the data will instruct him on how to manipulate the particles in his chamber (much as my earlier phone call instructed him on how to manipulate Photon C). When he finishes, each particle in his chamber will be in precisely the same quantum state as each particle in the DeLorean (before it was subjected to any measurements) and so, as in our earlier discussion, Nicholas will now have the DeLorean.* Its teleportation from New York to London will be complete.
Note, though, that as of today, every step in this macroscopic version of quantum teleportation is fantasy. An object like a DeLorean has in excess of a billion billion billion particles. While experimenters are gaining facility with entangling more than a single pair of particles, they are extremely far from reaching numbers relevant for macroscopic entities. 6 Setting up the two chambers of entangled particles is thus absurdly beyond current reach. Moreover, the joint measurement of two photons was, in itself a difficult and impressive feat. Extending this to a joint measurement of billions and billions of particles is, as of today, unimaginable. From our current vantage point, a dispassionate assessment would conclude that teleporting a macroscopic object, at least in the manner so far employed for a single particle, is eons — if not an eternity — away.
But, as the one constant in science and technology is the transcendence of naysaying prophesies, I'll simply note the obvious: teleportation of macroscopic bodies looks unlikely. Yet, who knows? Forty years ago, the Enterprise's computer looked pretty unlikely too. 7
*For collections of particles — as opposed to individual particles — the quantum state also encodes the relationship of each particle in the collection to eve other. So, by exactly reproducing the quantum state of the particles making up the DeLorean, we ensure that they all stand in the same relation to each other; the only change they experience is that their overall location would have been shifted from New York to London.