THE FABRIC of the COSMOS, Brian Greene, 2004
```(annotated and with added bold highlights by Epsilon=One)
```(annotated and with added bold highlights by Epsilon=One)
Chapter 13 - The Universe on a Brane
Braneworld Cosmology
A primary goal of current research, one that is being hotly pursued by scientists worldwide (including me), is to formulate an understanding of cosmology that incorporates the new insights of string/M-theory. The reason is clear: not only does cosmology grapple with the big, gulp-in-the-throat questions, and not only have we come to realize that aspects of familiar experience — such as the arrow of time — are bound up with conditions at the universe's birth, but cosmology also provides a theorist with what New York provided Sinatra: a proving ground par excellence. If a theory can make it in the extreme conditions characteristic of the universe's earliest moments, it can make it anywhere.
As of today, cosmology according to string/M-theory is a work in progress, with researchers heading down two main pathways. The first and more conventional approach imagines that just as inflation provided a brief but profound front end to the standard big bang theory, string/MŽtheory provides a yet earlier and perhaps yet more profound front end to inflation. The vision is that string/M-theory will unfuzz the fuzzy patch we've used to denote our ignorance of the universe's earliest moments, and after that, the cosmological drama will unfold according to inflationary theory's remarkably successful script, recounted in earlier chapters.
While there has been progress on specific details required by this vision (such as trying to understand why only three of the universe's spatial dimensions underwent expansion, as well as developing mathematical methods that may prove relevant to analyzing the spaceless/timeless realm that may precede inflation), the eureka moments have yet to occur. The intuition is that whereas inflationary cosmology imagines the observable universe getting ever smaller at ever earlier times — and hence being ever hotter, denser, and energetic — string/M-theory tames this unruly (in physics-speak, "singular") behavior by introducing a minimal size (as in our discussion on pages 350-351) below which new and less singular physical quantities become relevant. This reasoning lies at the heart of string/M-theory's successful merger of general relativity and quantum mechanics, and many researchers expect that we will shortly determine how to apply the same reasoning in the context of cosmology. But, as of now, the fuzzy patch still looks fuzzy, and it's anybody's guess when clarity will be achieved.
The second approach employs the braneworld scenario, and in its most radical incarnation posits a completely new cosmological framework. It is far from clear whether this approach will survive detailed mathematical scrutiny, but it does provide a good example of how breakthroughs in fundamental theory can suggest novel trails through well-trodden territory. The proposal is called the cyclic model.
As of today, cosmology according to string/M-theory is a work in progress, with researchers heading down two main pathways. The first and more conventional approach imagines that just as inflation provided a brief but profound front end to the standard big bang theory, string/MŽtheory provides a yet earlier and perhaps yet more profound front end to inflation. The vision is that string/M-theory will unfuzz the fuzzy patch we've used to denote our ignorance of the universe's earliest moments, and after that, the cosmological drama will unfold according to inflationary theory's remarkably successful script, recounted in earlier chapters.
While there has been progress on specific details required by this vision (such as trying to understand why only three of the universe's spatial dimensions underwent expansion, as well as developing mathematical methods that may prove relevant to analyzing the spaceless/timeless realm that may precede inflation), the eureka moments have yet to occur. The intuition is that whereas inflationary cosmology imagines the observable universe getting ever smaller at ever earlier times — and hence being ever hotter, denser, and energetic — string/M-theory tames this unruly (in physics-speak, "singular") behavior by introducing a minimal size (as in our discussion on pages 350-351) below which new and less singular physical quantities become relevant. This reasoning lies at the heart of string/M-theory's successful merger of general relativity and quantum mechanics, and many researchers expect that we will shortly determine how to apply the same reasoning in the context of cosmology. But, as of now, the fuzzy patch still looks fuzzy, and it's anybody's guess when clarity will be achieved.
The second approach employs the braneworld scenario, and in its most radical incarnation posits a completely new cosmological framework. It is far from clear whether this approach will survive detailed mathematical scrutiny, but it does provide a good example of how breakthroughs in fundamental theory can suggest novel trails through well-trodden territory. The proposal is called the cyclic model.