**THE FABRIC of the COSMOS,****Brian Greene,**2004

```(annotated and with added

**bold highlights by Epsilon=One**)

**Chapter 12 - The World on a String**

Jitters and Their Discontent

*6*So far, we've discussed only quantum jitters for fields that exist within space. What about the quantum jitters of space itself? While this might sound mysterious, it's actually just another example of quantum field jitters — an example, however, that proves particularly troublesome. In the general theory of relativity, Einstein established that the gravitational force can be described by warps and curves in the fabric of space; he showed that gravitational fields manifest themselves through the shape or geometry of space (and of spacetime, more generally). Now, just like any other field, the gravitational field is subject to quantum jitters: the uncertainty principle ensures that over tiny distance scales, the gravitational field fluctuates up and down. And since the gravitational field is synonymous with the shape of space, such quantum jitters mean that the shape of space fluctuates randomly. Again, as with all examples of quantum uncertainty, on everyday distance scales the jitters are too small to be sensed directly, and the surrounding environment appears smooth, placid, and predictable. But the smaller the scale of observation the larger the uncertainty, and the more tumultuous the quantum fluctuations become.

This is illustrated in Figure 12.2, in which we sequentially magnify the fabric of space to reveal its structure at ever smaller distances. The lowermost level of the figure shows the quantum undulations of space on familiar scales and, as you can see, there's nothing to see — the undulations are unobservably small, so space appears calm and flat. But as we home in by sequentially magnifying the region, we see that the undulations of space get increasingly frenetic. By the highest level in the figure, which shows the fabric of space on scales smaller than the

While exotic in detail, the broad-brush lesson illustrated by Figure 12.2 is one with which we are already familiar: concepts and conclusions relevant on one scale may not be applicable on all scales. This is a key principle in physics, and one that we encounter repeatedly even in far more prosaic contexts. Take a glass of water. Describing the water as a smooth, uniform liquid is both useful and relevant on everyday scales, but it's an approximation that breaks down if we analyze the water with submicroscopic precision. On tiny scales, the smooth image gives way to a completely different framework of widely separated molecules and atoms. Similarly, Figure 12.2 shows that Einstein's conception of a smooth, gently curving, geometrical space and time, although powerful and accurate for describing the universe on large scales, breaks down if we analyze the universe at extremely short distance and time scales. Physicists believe that as with water, the smooth portrayal of space and time is an approximation that gives way to another, more fundamental framework when considered on ultramicroscopic scales. What that framework is — what constitutes the "molecules" and "atoms" of space and time — is a question currently being pursued with great vigor. It has yet to be resolved.

Even so, what is thoroughly clear from Figure 12.2 is that on tiny scales the smooth character of space and time envisioned by general relativity locks horns with the frantic, jittery character of quantum mechanics. The core principle of Einstein's general relativity, that space and time form a gently curving geometrical shape, runs smack into the core principle of quantum mechanics, the uncertainty principle, which implies a wild, tumultuous, turbulent environment on the tiniest of scales. The violent clash between the central ideas of general relativity and quantum mechanics has made meshing the two theories one of the most difficult challenges physicists have encountered during the last eighty years.

**Figure 12.2**Successive magnifications of space reveal that below the Planck length, space becomes unrecognizably tumultuous due to quantum jitters. (These are imaginary magnifying glasses, each of which magnifies between 10 million and 100 million times.)

This is illustrated in Figure 12.2, in which we sequentially magnify the fabric of space to reveal its structure at ever smaller distances. The lowermost level of the figure shows the quantum undulations of space on familiar scales and, as you can see, there's nothing to see — the undulations are unobservably small, so space appears calm and flat. But as we home in by sequentially magnifying the region, we see that the undulations of space get increasingly frenetic. By the highest level in the figure, which shows the fabric of space on scales smaller than the

*Planck length*— a millionth of a billionth of a billionth of a billionth (10^-33) of a centimeter — space becomes a seething, boiling cauldron of frenzied fluctuations. As the illustration makes clear, the usual notions of left/right, back/forth, and up/down become so jumbled by the ultramicroscopic tumult that they lose all meaning. Even the usual notion of before/after, which we've been illustrating by sequential slices in the spacetime loaf, is rendered meaningless by quantum fluctuations on time scales shorter than the Planck time, about a tenth of a millionth of a trillionth of a trillionth of a trillionth (10^-43) of a second (which is roughly the time it takes light to travel a Planck length). Like a blurry photograph, the wild undulations in Figure 12.2 Make it impossible to distinguish one time slice from another unambiguously when the time interval between them becomes shorter than the Planck time. The upshot is that on scales shorter than Planck distances and durations, quantum uncertainty renders the fabric of the cosmos so twisted and distorted that the usual conceptions of space and time are no longer applicable.While exotic in detail, the broad-brush lesson illustrated by Figure 12.2 is one with which we are already familiar: concepts and conclusions relevant on one scale may not be applicable on all scales. This is a key principle in physics, and one that we encounter repeatedly even in far more prosaic contexts. Take a glass of water. Describing the water as a smooth, uniform liquid is both useful and relevant on everyday scales, but it's an approximation that breaks down if we analyze the water with submicroscopic precision. On tiny scales, the smooth image gives way to a completely different framework of widely separated molecules and atoms. Similarly, Figure 12.2 shows that Einstein's conception of a smooth, gently curving, geometrical space and time, although powerful and accurate for describing the universe on large scales, breaks down if we analyze the universe at extremely short distance and time scales. Physicists believe that as with water, the smooth portrayal of space and time is an approximation that gives way to another, more fundamental framework when considered on ultramicroscopic scales. What that framework is — what constitutes the "molecules" and "atoms" of space and time — is a question currently being pursued with great vigor. It has yet to be resolved.

Even so, what is thoroughly clear from Figure 12.2 is that on tiny scales the smooth character of space and time envisioned by general relativity locks horns with the frantic, jittery character of quantum mechanics. The core principle of Einstein's general relativity, that space and time form a gently curving geometrical shape, runs smack into the core principle of quantum mechanics, the uncertainty principle, which implies a wild, tumultuous, turbulent environment on the tiniest of scales. The violent clash between the central ideas of general relativity and quantum mechanics has made meshing the two theories one of the most difficult challenges physicists have encountered during the last eighty years.